3.50 \(\int \frac{\sqrt{a+b x^2}}{(c+d x^2)^2} \, dx\)

Optimal. Leaf size=82 \[ \frac{a \tanh ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{c} \sqrt{a+b x^2}}\right )}{2 c^{3/2} \sqrt{b c-a d}}+\frac{x \sqrt{a+b x^2}}{2 c \left (c+d x^2\right )} \]

[Out]

(x*Sqrt[a + b*x^2])/(2*c*(c + d*x^2)) + (a*ArcTanh[(Sqrt[b*c - a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^2])])/(2*c^(3/2)*
Sqrt[b*c - a*d])

________________________________________________________________________________________

Rubi [A]  time = 0.0344839, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {378, 377, 208} \[ \frac{a \tanh ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{c} \sqrt{a+b x^2}}\right )}{2 c^{3/2} \sqrt{b c-a d}}+\frac{x \sqrt{a+b x^2}}{2 c \left (c+d x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2]/(c + d*x^2)^2,x]

[Out]

(x*Sqrt[a + b*x^2])/(2*c*(c + d*x^2)) + (a*ArcTanh[(Sqrt[b*c - a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^2])])/(2*c^(3/2)*
Sqrt[b*c - a*d])

Rule 378

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^q)/(a*n*(p + 1)), x] - Dist[(c*q)/(a*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[n*(p + q + 1) + 1, 0] && GtQ[q, 0] && NeQ[p, -1]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x^2}}{\left (c+d x^2\right )^2} \, dx &=\frac{x \sqrt{a+b x^2}}{2 c \left (c+d x^2\right )}+\frac{a \int \frac{1}{\sqrt{a+b x^2} \left (c+d x^2\right )} \, dx}{2 c}\\ &=\frac{x \sqrt{a+b x^2}}{2 c \left (c+d x^2\right )}+\frac{a \operatorname{Subst}\left (\int \frac{1}{c-(b c-a d) x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )}{2 c}\\ &=\frac{x \sqrt{a+b x^2}}{2 c \left (c+d x^2\right )}+\frac{a \tanh ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{c} \sqrt{a+b x^2}}\right )}{2 c^{3/2} \sqrt{b c-a d}}\\ \end{align*}

Mathematica [B]  time = 0.231145, size = 165, normalized size = 2.01 \[ \frac{x \sqrt{a+b x^2} \left (\sqrt{x^2 \left (\frac{d}{c}-\frac{b}{a}\right )} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}+\sqrt{\frac{d x^2}{c}+1} \sin ^{-1}\left (\frac{\sqrt{x^2 \left (\frac{d}{c}-\frac{b}{a}\right )}}{\sqrt{\frac{d x^2}{c}+1}}\right )\right )}{2 c^2 \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} \sqrt{x^2 \left (\frac{d}{c}-\frac{b}{a}\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*x^2]/(c + d*x^2)^2,x]

[Out]

(x*Sqrt[a + b*x^2]*(Sqrt[(-(b/a) + d/c)*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))] + Sqrt[1 + (d*x^2)/c]*ArcSi
n[Sqrt[(-(b/a) + d/c)*x^2]/Sqrt[1 + (d*x^2)/c]]))/(2*c^2*Sqrt[(-(b/a) + d/c)*x^2]*Sqrt[1 + (b*x^2)/a]*Sqrt[1 +
 (d*x^2)/c])

________________________________________________________________________________________

Maple [B]  time = 0.024, size = 2521, normalized size = 30.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(1/2)/(d*x^2+c)^2,x)

[Out]

1/4/c/(a*d-b*c)/(x+(-c*d)^(1/2)/d)*((x+(-c*d)^(1/2)/d)^2*b-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)/d)^
(3/2)+1/4/c/d*b*(-c*d)^(1/2)/(a*d-b*c)*((x+(-c*d)^(1/2)/d)^2*b-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)
/d)^(1/2)+1/4/d*b^(3/2)/(a*d-b*c)*ln((-b*(-c*d)^(1/2)/d+b*(x+(-c*d)^(1/2)/d))/b^(1/2)+((x+(-c*d)^(1/2)/d)^2*b-
2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))-1/4/c/d*b*(-c*d)^(1/2)/(a*d-b*c)/((a*d-b*c)/d)^(1/2)
*ln((2*(a*d-b*c)/d-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+2*((a*d-b*c)/d)^(1/2)*((x+(-c*d)^(1/2)/d)^2*b-2*b*(-c
*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))/(x+(-c*d)^(1/2)/d))*a+1/4/d^2*b^2*(-c*d)^(1/2)/(a*d-b*c)/((
a*d-b*c)/d)^(1/2)*ln((2*(a*d-b*c)/d-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+2*((a*d-b*c)/d)^(1/2)*((x+(-c*d)^(1/
2)/d)^2*b-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))/(x+(-c*d)^(1/2)/d))-1/4/c*b/(a*d-b*c)*((x+
(-c*d)^(1/2)/d)^2*b-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2)*x-1/4/c*b^(1/2)/(a*d-b*c)*ln((-b*
(-c*d)^(1/2)/d+b*(x+(-c*d)^(1/2)/d))/b^(1/2)+((x+(-c*d)^(1/2)/d)^2*b-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*
d-b*c)/d)^(1/2))*a+1/4/(-c*d)^(1/2)/c*((x-(-c*d)^(1/2)/d)^2*b+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+(a*d-b*c)/
d)^(1/2)+1/4/c*b^(1/2)/d*ln((b*(-c*d)^(1/2)/d+b*(x-(-c*d)^(1/2)/d))/b^(1/2)+((x-(-c*d)^(1/2)/d)^2*b+2*b*(-c*d)
^(1/2)/d*(x-(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))-1/4/(-c*d)^(1/2)/c/((a*d-b*c)/d)^(1/2)*ln((2*(a*d-b*c)/d+2*b*(
-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+2*((a*d-b*c)/d)^(1/2)*((x-(-c*d)^(1/2)/d)^2*b+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1
/2)/d)+(a*d-b*c)/d)^(1/2))/(x-(-c*d)^(1/2)/d))*a+1/4/(-c*d)^(1/2)/d/((a*d-b*c)/d)^(1/2)*ln((2*(a*d-b*c)/d+2*b*
(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+2*((a*d-b*c)/d)^(1/2)*((x-(-c*d)^(1/2)/d)^2*b+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(
1/2)/d)+(a*d-b*c)/d)^(1/2))/(x-(-c*d)^(1/2)/d))*b+1/4/c/(a*d-b*c)/(x-(-c*d)^(1/2)/d)*((x-(-c*d)^(1/2)/d)^2*b+2
*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(3/2)-1/4/c/d*b*(-c*d)^(1/2)/(a*d-b*c)*((x-(-c*d)^(1/2)/d)^2
*b+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2)+1/4/d*b^(3/2)/(a*d-b*c)*ln((b*(-c*d)^(1/2)/d+b*(x-
(-c*d)^(1/2)/d))/b^(1/2)+((x-(-c*d)^(1/2)/d)^2*b+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))+1/4
/c/d*b*(-c*d)^(1/2)/(a*d-b*c)/((a*d-b*c)/d)^(1/2)*ln((2*(a*d-b*c)/d+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+2*((
a*d-b*c)/d)^(1/2)*((x-(-c*d)^(1/2)/d)^2*b+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))/(x-(-c*d)^
(1/2)/d))*a-1/4/d^2*b^2*(-c*d)^(1/2)/(a*d-b*c)/((a*d-b*c)/d)^(1/2)*ln((2*(a*d-b*c)/d+2*b*(-c*d)^(1/2)/d*(x-(-c
*d)^(1/2)/d)+2*((a*d-b*c)/d)^(1/2)*((x-(-c*d)^(1/2)/d)^2*b+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+(a*d-b*c)/d)^
(1/2))/(x-(-c*d)^(1/2)/d))-1/4/c*b/(a*d-b*c)*((x-(-c*d)^(1/2)/d)^2*b+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+(a*
d-b*c)/d)^(1/2)*x-1/4/c*b^(1/2)/(a*d-b*c)*ln((b*(-c*d)^(1/2)/d+b*(x-(-c*d)^(1/2)/d))/b^(1/2)+((x-(-c*d)^(1/2)/
d)^2*b+2*b*(-c*d)^(1/2)/d*(x-(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))*a-1/4/(-c*d)^(1/2)/c*((x+(-c*d)^(1/2)/d)^2*b-
2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2)+1/4/c*b^(1/2)/d*ln((-b*(-c*d)^(1/2)/d+b*(x+(-c*d)^(1/
2)/d))/b^(1/2)+((x+(-c*d)^(1/2)/d)^2*b-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))+1/4/(-c*d)^(1
/2)/c/((a*d-b*c)/d)^(1/2)*ln((2*(a*d-b*c)/d-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+2*((a*d-b*c)/d)^(1/2)*((x+(-
c*d)^(1/2)/d)^2*b-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))/(x+(-c*d)^(1/2)/d))*a-1/4/(-c*d)^(
1/2)/d/((a*d-b*c)/d)^(1/2)*ln((2*(a*d-b*c)/d-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+2*((a*d-b*c)/d)^(1/2)*((x+(
-c*d)^(1/2)/d)^2*b-2*b*(-c*d)^(1/2)/d*(x+(-c*d)^(1/2)/d)+(a*d-b*c)/d)^(1/2))/(x+(-c*d)^(1/2)/d))*b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b x^{2} + a}}{{\left (d x^{2} + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^2 + a)/(d*x^2 + c)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 2.13738, size = 765, normalized size = 9.33 \begin{align*} \left [\frac{4 \,{\left (b c^{2} - a c d\right )} \sqrt{b x^{2} + a} x +{\left (a d x^{2} + a c\right )} \sqrt{b c^{2} - a c d} \log \left (\frac{{\left (8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} + 2 \,{\left (4 \, a b c^{2} - 3 \, a^{2} c d\right )} x^{2} + 4 \,{\left ({\left (2 \, b c - a d\right )} x^{3} + a c x\right )} \sqrt{b c^{2} - a c d} \sqrt{b x^{2} + a}}{d^{2} x^{4} + 2 \, c d x^{2} + c^{2}}\right )}{8 \,{\left (b c^{4} - a c^{3} d +{\left (b c^{3} d - a c^{2} d^{2}\right )} x^{2}\right )}}, \frac{2 \,{\left (b c^{2} - a c d\right )} \sqrt{b x^{2} + a} x -{\left (a d x^{2} + a c\right )} \sqrt{-b c^{2} + a c d} \arctan \left (\frac{\sqrt{-b c^{2} + a c d}{\left ({\left (2 \, b c - a d\right )} x^{2} + a c\right )} \sqrt{b x^{2} + a}}{2 \,{\left ({\left (b^{2} c^{2} - a b c d\right )} x^{3} +{\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right )}{4 \,{\left (b c^{4} - a c^{3} d +{\left (b c^{3} d - a c^{2} d^{2}\right )} x^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^2,x, algorithm="fricas")

[Out]

[1/8*(4*(b*c^2 - a*c*d)*sqrt(b*x^2 + a)*x + (a*d*x^2 + a*c)*sqrt(b*c^2 - a*c*d)*log(((8*b^2*c^2 - 8*a*b*c*d +
a^2*d^2)*x^4 + a^2*c^2 + 2*(4*a*b*c^2 - 3*a^2*c*d)*x^2 + 4*((2*b*c - a*d)*x^3 + a*c*x)*sqrt(b*c^2 - a*c*d)*sqr
t(b*x^2 + a))/(d^2*x^4 + 2*c*d*x^2 + c^2)))/(b*c^4 - a*c^3*d + (b*c^3*d - a*c^2*d^2)*x^2), 1/4*(2*(b*c^2 - a*c
*d)*sqrt(b*x^2 + a)*x - (a*d*x^2 + a*c)*sqrt(-b*c^2 + a*c*d)*arctan(1/2*sqrt(-b*c^2 + a*c*d)*((2*b*c - a*d)*x^
2 + a*c)*sqrt(b*x^2 + a)/((b^2*c^2 - a*b*c*d)*x^3 + (a*b*c^2 - a^2*c*d)*x)))/(b*c^4 - a*c^3*d + (b*c^3*d - a*c
^2*d^2)*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x^{2}}}{\left (c + d x^{2}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(1/2)/(d*x**2+c)**2,x)

[Out]

Integral(sqrt(a + b*x**2)/(c + d*x**2)**2, x)

________________________________________________________________________________________

Giac [B]  time = 3.03052, size = 293, normalized size = 3.57 \begin{align*} -\frac{a \sqrt{b} \arctan \left (\frac{{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} d + 2 \, b c - a d}{2 \, \sqrt{-b^{2} c^{2} + a b c d}}\right )}{2 \, \sqrt{-b^{2} c^{2} + a b c d} c} + \frac{2 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} b^{\frac{3}{2}} c -{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} a \sqrt{b} d + a^{2} \sqrt{b} d}{{\left ({\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{4} d + 4 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} b c - 2 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} a d + a^{2} d\right )} c d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^2,x, algorithm="giac")

[Out]

-1/2*a*sqrt(b)*arctan(1/2*((sqrt(b)*x - sqrt(b*x^2 + a))^2*d + 2*b*c - a*d)/sqrt(-b^2*c^2 + a*b*c*d))/(sqrt(-b
^2*c^2 + a*b*c*d)*c) + (2*(sqrt(b)*x - sqrt(b*x^2 + a))^2*b^(3/2)*c - (sqrt(b)*x - sqrt(b*x^2 + a))^2*a*sqrt(b
)*d + a^2*sqrt(b)*d)/(((sqrt(b)*x - sqrt(b*x^2 + a))^4*d + 4*(sqrt(b)*x - sqrt(b*x^2 + a))^2*b*c - 2*(sqrt(b)*
x - sqrt(b*x^2 + a))^2*a*d + a^2*d)*c*d)